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Abstract. Fluctuating electrostrictive forces inside a dielectric lead to the radiation of photons if
the dielectric is deformed or displaced by external forces. This is a generalization of the effect of
radiation from moving mirrors to physically realistic systems.

Quantum radiation from moving mirrors was discovered more than 20 years ago [1,2], and it
has since been shown that the effect is not specific to perfectly conducting mirrors but occurs
in much the same way for moving dielectric mirrors [3]. However, all studies to date have
regarded the mirror as a rigid body which makes the radiation appear to originate from the
surface of the mirror or from the interface of two dielectric media of different polarizability. A
rigid body is, of course, a wholly artificial model; in reality all material bodies are compressible.
Dropping the assumption of rigidity one discovers a whole range of new effects previously
ignored.

This paper centres on the investigation of the interaction of a compressible dielectric
with the electromagnetic field and, in particular, with the vacuum fluctuations of the field. The
question posed is whether an arbitrary change in the density of a dielectric radiates photons and
what the characteristics of this radiation is. The dielectric is supposed to be non-dispersive and
non-absorbing, which is always a valid assumption for a model since one can restrict oneself
to a particular range of frequencies where dispersion is absent, though, for simplicity, the
calculations to follow will make this assumption for all frequencies‡. Thus, the dielectric can
be described by a local dielectric constantε(r, t)which is a certain function of the local density
ρ(r, t) of the material but is supposed not otherwise to depend on any varying parameter. In
particular, any temperature dependence ofε is ignored for the present purposes§. The density
distributionρ(r, t) is assumed to satisfy the equation of continuity

∂ρ

∂t
+∇ · (ρβ) = 0 (1)

whereβ(r, t) is the local flow velocity of the material‖.
† Present address: Sussex Centre for Optical and Atomic Physics, CPES, University of Sussex, Falmer, Brighton
BN1 9QH, UK.
‡ Dispersion cannot be ignored if the time-dependence of the densityρ (and hence of the dielectric constantε) is such
that it includes significant Fourier modes (phonons) at a frequency whereε is strongly dispersive. Then the coupling
of these modes to dissipation in the dielectric will dominate the physical processes in the system.
§ Next-to-leading-order corrections to the effects considered here come from local compressional heating.
‖ h̄ andc are set equal to one throughout this paper. The velocityβ is always assumed to be small compared with
one, i.e. any material motion is supposed to be slow compared with the speed of light.
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If the dielectric is linear and non-magnetic, then the relationsD′ = εE′ andB′ =H ′ are
valid in the individual rest-frames of every volume element of the dielectric. Transformation
into the laboratory frame where the dielectric moves with the velocityβ(r) then leads to the
constitutive equations

E = 1

ε
D − ε − 1

ε
β ×B H = B +

ε − 1

ε
β ×D (2)

where terms of orderβ2 and higher have already been discarded (cf equation (278) of [4] and
equation (76.9) of [5]). The above consideration ignores effects of spatial dispersion, which,
however, is innocuous in the case of dielectrics as long as the wavelengths of any density
variation are longer than atomic dimensions (cf section 103 of [5], or [6]).

Proceeding from the material-independent expression for the Hamiltonian density for the
electromagnetic fields

H = 1
2(D ·E +B ·H) (3)

one can then easily construct the Hamiltonian for the fields in the presence of a time-varying
dielectric by expressing theE andH fields in equation (3) through the constitutive relations
(2). This gives the HamiltonianH = H0 +1H with the unperturbed part

H0 = 1

2

∫
R3

d3r

(
D2

ε[ρ(r, t)]
+B2

)
(4)

and the perturbation

1H =
∫

R3
d3r

ε − 1

ε
β(r, t) · (D ×B). (5)

This is a very natural result. The first term, (4), is just the zero-order Hamiltonian for the
medium at rest but with a parametric dependence on the (local) dielectric constant and hence
on the particular density distribution at any given moment. The second term, (5), is the energy
flux of the moving polarization field that necessarily accompanies any material motionβ(r, t).

Alternatively one can derive the above Hamiltonian from first principles by way of a
Lagrangian (see appendix A of [7] for that). It turns out that the Lagrangian density for a
moving dielectric is uniquely determined by three basic requirements: (i) that it is a Lorentz
scalar, (ii) that in the limitε = 1 it reduces to the Lagrangian density for the fields in vacuum,
and (iii) that in the limitβ = 0 it turns into the Lagrangian density for the fields in a stationary
dielectric.

The system is quantized by diagonalizing the zero-order HamiltonianH0 of equation (4),
i.e. by mapping it into the Hamiltonian for a bath of harmonic oscillators that represent photons
of wavevectork and polarizationσ ,

H0 =
∑
σ

∫
d3kω(a†

k,σ ak,σ + 1
2). (6)

This is achieved by the standard mode expansion

D(r) = ε(r)
∑
σ

∫
d3k

iω√
ω
(ak,σA[ρ](r;k, σ )− h.c.)

B(r) =
∑
σ

∫
d3k

1√
ω
(ak,σ∇×A[ρ](r;k, σ ) + h.c.)

with mode functions that satisfy the generalized Coulomb gauge condition∇·{ε(r)A[ρ](r)} =
0 and are solutions of the wave equation

ω2ε[ρ]A[ρ](r;k, σ )−∇×∇×A[ρ](r;k, σ ) = 0. (7)
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This equation is the eigenvalue equation of the Hermitean operator 1/
√
ε(∇ ×∇×)1/√ε:

each eigenvalue,ω2, belongs to a whole set of degenerate states which are labelled by a
wavevectork and a polarization indexσ , as usual, and the functions

√
ε[ρ]A[ρ](r;k, σ ) form

an orthogonal and complete set of eigenfunctions which spans the Hilbert space.
Although this eigenvalue problem is well posed, in practice it may be rather difficult to

solve equation (7) exactly for all possible distributionsρ(r). However, in most applications
WKB theory can be resorted to for finding an approximate solution of sufficient accuracy.

The time-evolution of the state of the electromagnetic field is described by the Schrödinger
equation

i
d

dt
|ψ(t)〉 = (H0 +1H)|ψ(t)〉 (8)

with the initial conditionψ(t0)〉 = |0〉 that the field is in the ground state where no photons
are present in any of the modes. The solution of this partial differential equation is somewhat
more complicated than usual. Even though1H is a small perturbation since the velocityβ is
very small compared with the speed of light, standard perturbation theory cannot be applied
because the zero-order Hamiltonian,H0, is a functional of the density distribution,ρ(r, t),
and hence depends parametrically on time. The problem can neither be solved by straight-
forward application of the method of adiabatic approximation [8], but nevertheless the spirit
of the adiabatic approximation can be followed in the solution. The idea is to determine
the complete sets of eigenstates of the zero-order HamiltonianH0[ρ(t)] for all t , i.e. for every
possible density distribution, and to expand the wavefunction|ψ(t)〉 in terms of the appropriate
set at timet . Inserting such an expansion into the Schrödinger equation (8) one obtains an
infinite system of interdependent differential equations for the expansion coefficients. One
then commonly extracts a phase from these expansion coefficients (which are the transition
matrix elements of|ψ(t)〉 into the momentary eigenstates〈m|) by defining

〈m|ψ〉 = cm exp

[
− i

∫ t

t0

dτ Em(τ)

]
(9)

where Em(t) is the parametrically time-dependent energy eigenvalue belonging to the
eigenstate|m〉. In the following it will be assumed that the photon energies and hence these
eigenvalues,Em, are in fact independent ofρ(r, t) and therefore of time. This is a valid
assumption as long as the photon modes do not contain strong multiple scattering off the
dielectric. (A high-Q cavity of variable length, for instance, cannot be considered in this
approximation because the energies of the photon modes inside it depend on its length.) The
system of differential equations for the expansion coefficients can then be solved perturbatively.
The details of this modified adiabatic approximation have been reported at the beginning of
section III of [7], so that the first-order solution for evolution from ground state is only quoted
here. To first order in the perturbation parameter,β, the vacuum receives only admixtures of
two-photon states|1k, 1k′ 〉 = |k,k′〉, and up to a phase exp[−i(ω + ω′)(t − t0)], as indicated
in equation (9), the time derivative of the transition matrix element〈k,k′|ψ〉 is given by

∂ckk′

∂t
=
(

1

ω + ω′
〈k,k′|∂H0

∂t
|0〉 − i〈k,k′|1H |0〉

)
ei(ω+ω′)(t−t0). (10)

Note that the two terms in the parentheses are of the same order. By way of the continuity
equation (1) the time derivative ofH0 leads to a linear dependence of this term on the velocity
β, and the perturbation1H in the other term is inherently of orderβ. This shows in retrospect
that both terms are equally important, and that neither standard perturbation theory dealing
solely with1H nor an adiabatic treatment ofH0[ρ(t)] alone would have given correct results.
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The derivative ofH0 with respect to the parameter-dependence on time is given through
the functional derivative with respect to the density profileρ(r, t)

∂H0

∂t
=
∫

d3r
δH0

δρ

∂ρ

∂t
(11)

and hence one obtains
∂H0

∂t
= −1

2

∫
d3r

D2

ε2

∂ε

∂ρ

∂ρ

∂t
. (12)

According to equation (5) one has

〈k,k′|1H |0〉 =
∫

d3r β(r, t) · ε − 1

ε
〈k,k′|D ×B|0〉. (13)

Since the two-photon state|k,k′〉 is an eigenstate ofH0 with eigenvalueω+ω′, one can recast
the matrix element

〈k,k′|D ×B|0〉 = −i

ω + ω′
〈k,k′| ∂

∂t
(D ×B)|0〉. (14)

This is, of course, a zero-order identity, which however is fully sufficient at this stage of a first-
order calculation. Using the continuity equation (1) and integrating by parts one can finally
write for the time derivative of the transition amplitude:

∂ckk′

∂t
= − 1

ω + ω′
ei(ω+ω′)(t−t0)

∫
d3r β(r, t) · 〈k,k′|f(r)|0〉 (15)

where the newly introduced quantityf(r) reads

f = 1

2
ρ∇

∂ε

∂ρ

D2

ε2
+
ε − 1

ε

∂

∂t
(D ×B). (16)

Inspection reveals that this quantity is in fact the force density exerted on a compressible
dielectric by time-dependent electromagnetic fields (cf formula (75.18) of [5]), whose terms are
going to be analysed in more detail. In connection with equation (15) it should be emphasized
that although the matrix element〈k,k′|f(r)|0〉 does not depend explicitly on time, it does
so implicitly via the parameter dependence of the mode-functionsA[ρ](r;k, σ ) which are
solutions of the Helmholtz equation (7) for a given density distributionρ(r, t) which depends
on time.

The first term in the expression for the force density (16) is the force density for static
fields

fS(r) = 1

2
ρ∇

(
∂ε

∂ρ

D2

ε2

)
. (17)

Integration by parts brings this into the more familiar form

fS(r) = 1

2
∇
(
ρ
∂ε

∂ρ

D2

ε2

)
− 1

2

D2

ε2
∇ε (18)

which is found in all common textbooks that deal with electrostriction; the above expression
is identical to formula (45) on p 145 (section 2.22) of [9] and to formula (15.12) on p 62 of [5].

The second term in the force density equation (16) comes about only for time-dependent
fields. It is the rate of change of the momentum density resident in the polarization field†. By

† The question of the momentum density of the electromagnetic field in a dielectric is still marked by the afterglow
of the Minkowski–Abraham controversy. This author trusts the very thorough analysis of the problem by Nelson [17]
who shows that momentum rather than pseudomomentum conservation leads toE × B for the momentum density
of an electromagnetic field in a material medium. The interpretation of1H as the energy flux of the polarization
field and of the second term in equation (16) as the rate of change in the momentum density of the polarization field
is therefore consistent with Nelson’s conclusion. However, in practice the question is not of much relevance here
because the Minkowski and the Abraham formulations differ merely by a factor ofε which is negligible for weak
dielectrics andB andH are the same in non-magnetic materials.
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exploiting Maxwell’s equations, applying vector identities, and integrating by parts one can
also transfigure this second term. In total one can reformulate equation (16):

f(r) = 1

2
∇
[
D2

ε2
ρ
∂ε

∂ρ
− (ε − 1)

D2

ε2
− ε − 1

ε
B2

]
+∇i

[
ε − 1

ε

(
BiB +Di

D

ε

)]
−1

2
B2∇

1

ε
+B(B · ∇)

1

ε
+
D

ε
(D · ∇)

1

ε
. (19)

This expression may look much more cumbersome than the one in equation (16) but it is much
more convenient in calculations. Neither the first term, which is a gradient, nor the second,
which is a divergence, contribute to the total force acting on the dielectric as a whole. Just
like the first term in the static force-density (18) they are describing only local electrostrictive
compression in the dielectric and cancel out from the total force. The three terms in the
second line have the same meaning attached to them as the second term in equation (18); they
come from differences of the electromagnetic pressure across the dielectric and their prime
contribution comes from the interfaces of the dielectric with the vacuum. If one considers just
a rigid body then these are the only terms that arise, and the force on the body is then simply
given by the discontinuity of the stress tensor across the surfaces.

The main statement of equation (15) and of this paper is that fluctuations of the force
density cause emission of photon pairs if there is any variation in the local density so that the
local material flowβ(r, t) is non-zero. These must be density variations that are driven by an
external agent. If there is no external driving pressure the force density still fluctuates with a
mean square of

〈0|f2|0〉 − 〈0|f |0〉2 = 1
2

∫
dk
∫

dk′ |〈k,k′|f |0〉|2 (20)

but these fluctuations are in equilibrium and balance each other so that there is no photon
emission. This equilibrium is disturbed by an external driving pressure and dissipation sets in.
The microscopic mechanism of this dissipation is the radiation of photons.

This effect is not new if the dielectric moves as a whole. Then the approximation of a
rigid body captures the essential physics of the problem and one is led back to phenomenon
of quantum radiation by (rigid) dielectric mirrors which has been investigated for a one-
dimensional scalar model in [3] and for the full Maxwell field in three dimensions in [7].

What is new is that quantum radiation arises even if the dielectric is only compressed
internally. Then the fluctuating electrostrictive forces are shaken out of balance which, by
virtue of equation (15), causes internal dissipation by means of photon radiation. In reality
this effect occurs much more readily than the motion of a dielectric body as a whole. One
of the simplest practical cases would be an oscillatory density variation, in other words, a
phonon. However, Fermi’s golden rule demands that the frequency of the phonon lies in
the same range as the frequency of the expected photons, which makes the effect hard to
realise in practice. Of course one could specifically look for it, and experiments that have
been suggested to look for microwave radiation from moving mirrors may well see radiation
originating from compressions inside the ‘mirrors’, as described above, rather than genuine
Unruh, i.e. mirror-induced, radiation, or at best a combination of the two, as anticipated in [10].

Furthermore, one could ask what kind of density compressions away from harmonic
oscillations can reasonably cause a dielectric fluid to radiate photons. Any non-periodic process
can be analysed by decomposition into Fourier components just as well, which makes one
realise that optical photons are produced only if there are sufficient high-frequency components
found in the Fourier spectrum of the variation in the density of the dielectric. In other words,
one can expect to see such radiation only if there is some very fast process in the system. It
should be pointed out explicitly that the fastness or slowness of a process is not a statement
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about velocities but about short timescales and high frequencies. An example for such a
process would be a collision time which depends primarily on the strength of the interaction
of the two objects colliding. It seems not unreasonable that shock waves and their collisions
with boundaries are what is causing the thermal triboluminescence which has been observed
in alkali halides [11, 12]. Crystals subjected to cutting, milling, or scratching in ultra-high
vacuum are observed to emit short pulses of very weak light with a continuous and featureless
spectrum. So far the process has not found a satisfactory explanation. Attempts to explain the
effect by the decay of self-trapped excitons [13] were unconvincing at the time and have since
been rebutted by advances in knowledge about the spectra of such exciton decay [14] which
are very different from the spectra observed in thermal triboluminescence [12]. Therefore, it
may be useful to examine the possible origin of thermal triboluminescence from shock waves
in solids through the mechanism described in this paper more closely.

Further applications of this new mechanism can be envisaged, but most of them would
relate to solid dielectrics. Since for simplicity this paper has considered only a continuum
model for the dielectric, which is strictly only applicable to dielectric fluids, the next step is to
extend the investigations to solids on the basis of a formalism, for instance, as introduced by
Nelson [15].
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